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Abstract

In a series of recent papers, Bonciocat et al., have shown that the faradaic current density of an electrode redox reactions occurring with
combined limitations, of charge transfer and nonstationary linear, semi-infinite diffusion, is the solution of an integral equation of \olterra
type. This integral equation has been transformed to describe the transport of ions through the interface between two immiscible electrolytic
solutions. According to Goldman, Hodkin, Katz theory, the rest potential of a biological membrane is determined by the maintenance of
different concentrations of the ions N&* and CI, in the two aqueous solutions separated by the membrane. Using the integral equations (of
Volterra type) for the ionic current densitigg, ik, ic;, and applying the open circuit condition (i.eia + ik +ic = 0), the potential differences
at the junctions: aqueous solution (I)/membrane, respective membrane/aqueous solution (I1), have been obtained. To get the diffusion potential
across the membrane, the Planck’s theory has been used. The sum of these three contributions gives the expression of the rest potential (an
a comparison with the Goldman—Hodkin—Katz formula is made, showing in what conditions they become identical formulae).
© 2004 Published by Elsevier B.V.
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1. Introduction n(t) is the applied overtension at the moment of titne

is a time before, and the other quantities have the usual
In a series of papers, Bonciocat et al., have shown thatmeaningsi® = ioocé—ﬁcg the exchange current density of

the faradaic current density of an electrode redox reaction the electrode redox reaction afdts symmetry factorDo,

O +ne <« R, which occurs with combined charge transferand Dg (andco, cr) the diffusion coefficients (and the concen-

nonstationary, linear, semi-infinite diffusion limitations, is trations) of the electrochemical active species O and R. As

the solution of the following integral equation of Volterra for i%, it represents the standard exchange current density of

type[1-6]: the electrode reaction.

0 /S By solving the above integral equation, it was possible to
. i"N(1) ir(u) .
ir(t) = — W 72 du + ¢(t) 1) ground not only the nonstationary dc, and ac, methods already

T 0 (t —u) used in the experimental electrochemigfiryr], but also new
where methods of direct and cyclic voltammetry, chromoamperom-

exol—Bn fn(t expl(1— B fn(t etry and impedance spectroscdpy-21].

N(1) = F;EjD_f’?( ! p[(wg—)ﬁ?( ) 1) The integral Eq.(1) may be easily transformed to de-

" 0co " RCR scribe the transport of ions through the interface between two
and immiscible electrolytic solution (ITIES). Indeed, consider a

cation passing from an aqueous solution () to a nonaqueous

(1) = 1expl-nfn(®)] — expl(L— Anfa)]):; = -
R
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solution (ll). This passage is equivalent to an anodic elec-
trode redox reaction R> O +ne, the cation in solution (I1)

being the oxidized species O, and in solution (l) the reduced
species R. This equivalence comes from the fact that both
processes transport positive charges from left to right (i.e.,
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solution (I)— solution (ll), respective Me> solution). Of membrane
course, in the case of an anion, the passage is equivalent tc
a cathodic electrode redox reaction @e R, the anion in ¢l M cMif .
. ; o ) : : Na Na ............. Na |Cxa

solution (1) being the oxidized species, and in solution (I1) sl
the reduced species. D, L Ck | Cx O

Consequently, to obtain the integral equation whose solu- Ccn Ccn ______________ CI(\‘AI“ clc!l
tionic expresses proportionally (as a current density) the flux « ) 1\ )\ )\ )
of transport of a cation Cthrough the interface I/ll, suffice ¢ )
to make in the integral Eq1) the following changes: extra cellular intracellular
n(t) — nc(?) @ solution =P - Dy -gm=Py-@y;  solution
ir(t), ir(u) — ic(), ic(u) B

Zp=DMmI- dMII

0 _ olﬂﬁ ;00( Myl=he 1 yhe
! ‘R lc (C (c C) y Fig. 1. The electrochemical chain showing the components of the rest po-
Do, Dr — DC’ DC (2) tential of a biological membrargy, = ®, — &;; =gm1 — 9m2+db-
n—1
iC’ lC andﬂc represents the k|net|c parameters OfMypo_ a Comparison W|th the GOldman—HOdkin—KatZ formula iS

thetical electrode reactioby which one models the transport Made, showing in what conditions they become identical
of C* through the interface I/ll8c represents the symmetry ~ formulae.

factor of the energetic barrier determined by the electric dou-

ble layer of the interface I/11, and the exchange current density

ig is expressed in function of the standard exchange current2. Results and discussions

densnyz 0 and the concentrations of the catioh i@ the two

planes that delimitate the electric double layer. Concerning 2.1. The expressions of the electric tensiongand gn2

the expression afc(t), it will be given latter at a convenient

time. Let’s consider the junction I/MI, where by Ml we have

In the case of an anion the necessary changes are: ~ denoted the beginning of the membrane (i.e., the part which
is in contact with the extra cellular solution (1)).

n(6) = 1a(0) 3) To obtain the integral equations corresponding to the
ir (), ir(u) — ia(t), in(u) cations N& and K, we shall make the changé®) and(2)
in the integral Eq(1), but putting Ml instead of Il in their
1- 1-

= OoCo ﬂcg — ig = i2(cp) o (ch )ﬁA expressions. It thus results:
Do, Dr — DY, D\ 3)
n—1 Na( ) _Na\®J 4, | 4

0 .00 lNa(t) = QNa() ( )1/2 + ‘pNa(t) ( )

andiQ, i%°, Ba., cly, ¢ have similar meanings.

According to Goldman, Hodkin and Kaf22,23], the rest
potential of a biological membrane is determined by the dif-
ferent concentrations of the ions N&* and CI", inthe two 1, () — —QK(f)/ i (u) ) gl ) @)
aqueous solution separated by the membrane. These concent (t— )l/2
trations are maintained at practically constant values by a
irgzlcgggi?o’sﬁi,,enknown' which play the role of a "Biolog- Similarly, for the anion Ct, using the changd8) and(3')

Thus, the electrochemical chain needed to obtain the rest> © gets:
potential of a biological membrane is illustratecHigy. 1

Using the integral equations (of Volterra type) having ()
as solution the current densitiés., ik, ic;, and applying icit) = —Qcy(t )/ - o )1/2d“ + (1) 4")
the open circuit condition (i.eiya +ix +ic) =0), the poten-
tial differencesgmi1, and gm2 have been obtained. To get o ) )
the diffusion potential across the membrane, the PIancksWhere gorlsakel?zfsmphcny, we have introduced the quantity
theory has been used, because it supposes a “constraine® (O =i°N'(t)/m'/2 The superior index “I" indicates tHrst
diffusion” through the liquid junction, by which the ionic Junction i.e., /M. .
concentrations in each section of the junction layer remain N OPen circuit conditions:
constant in time[24-28] The sum of these three con-
tributions gives the expression of the rest potential, and lNa(t)+lK(t)+lCI(t) = ®)
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and therefore, where the minus sign comes from the convention used, i.e.,
; negative (positive) overtensions, determine positive (nega-
ONA(W)ika() + Ok (Wil (u) + O ()it |(M) tive) currents.
f (t — u)Y/? Coming back to Eq8), the integral term cancels and thus:
= \alD) + 0k () + o) ©  CNaWia(u) + Ok )ik () + Q)i (w)
_ f #nal0) + ¢k (0) + 914(0)
: : == 12)
An Abel integral equation has the form: 4 N
/(zW(u) du = C(r); «€ (0, 1) 7 Eq.(12) shows that:
. . 0l 1 (0)
and fora=1/2, its solution ig29]: ONa(ina() = j]:l a'g
’ — _ K 77K 13
()= {C(O) / = < (b;)l/zdu} @ %OKO= o ~
0 (i) =~ L8O
Thus, Eq.(6) is an Abel integral equation and has the \/Z
solution: and further
ONa)ina(u) + Qi ()i () + Qg ()i (w) A0
1 [«)'Na(O) + ¢k (0) + ¢(0) [iRa/ Qha()] 7o)
7 Vi _ it () ici ()
t — r;0l | |
. / (Phal0) + (k) + (@) © [/ 0k @1nk(0) [/ 0% @1n5(0)
(1 — u)2 _ iNa(t) + il (£) + ik, (1) o

[iO'a/Q'Na(r)ln'Na(O) + /0L Ok (©0) —  wvi

we shall accept that the human organism, by using a mech-

anism, yet nonelucidated, maintains the rest potential of the L&/ Qe ©) (14)
biological membrane at a constant value, i.e.,
gm(1) ~ const= gp,(0) 9)

Then, taking into account the open circuit conditi@),
(the index “m”, indicates that the rest potential isnixed it follows:

potential (because of the three ionic currents)). This hypoth-

esis has an important consequence concerning the functions iﬁ'a 0)+ 0' 0)+ 10| 0) = (15)
ona(D), 9k (1) and gt (7). Indeed in their expressions enter Ol (1) g QK(;)nK oLt )ﬂc|

the overtensiongy,(t). ni (), ni(#), which have the usual

meaning, i.e., the differences between the mixed potential  But, the overtensions,(0), nk(0) and ni,(0) being
gm(?) and the Nernst equilibrium tensions, corresponding to small, we may approximats] (), N (r) and Nk, (), by the
the three iong28]. Therefore, these overtensions are con- constant expressions (see E(9), (2) and(3)):

stant, i.e.,
1/ DNaDeha(® + / DNL (DN (2)

nINa(t) = glm(t) grev Na — gm(o) grev,Na = 77:\13(0)

I I M 'I\la(t )~ F
Nk (1) = gh(0) — greyk = 1k (0) (10) | DA () DML () cha(t) Nk (1)
| | | |
nci(®) = 8m(0) — grev.c1 = 1ci(0) YN
Cl m rev,Cl Cl | D:(([)CK (l) + DMI ([)C I(l)
and consequentpf,(1), ¢k (), ¢ (t), are constant too. Of Ny (1) ~ f (16)
course, we are interested in the case of small overtensions, J Pk ODR (1) (el (1)
which represent the usual situations in biological systems.
Then (see Eq1”)): 1y Dei(t)egy (1) + V DE ()] (1)

Ny~ =

Phal) = A, (0) = zNaanaw) Fo /D0 DY ey (e o)

| [
‘0:(( ) (p*f( ) an( ) (11) The concentrations in the membrane being very small, as
¢ci(f) = ¢y (0) = ’C|f’7<:|(0) compared to the corresponding ones in the aqueous solution,
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Eqgs.(16) simplify to:
1

F./ DN ()N (1)

1

F/ DM ()l (1) (16)

1

F/D¥ ()Ml (1)

N\a(t) >
N (1) ~
Ngy(r) ~

Further,

ol 1/2
lNa NJT/

QNa(t) h Nll\la

OI 7'[1/2
L A 4 (17)
Ok Ny

0l 1/2
lcl N?T/

0 Ny
and introducing in Eq(15):
v DNaeNana(0) + / D' el 1k (0)

+/ D cglng(0) =0 (18)

— 7b2p, Dl

= 7'/?F,/ DYl |

After using Eq.(10)to express the overtensions, Ef8)
takes the form:

| | | [ [
gm(0) = gm1= WNa8rev,Na T @k 8rev,k + @ci&rev,cl (19)

where the weight coefficients have the expressions:
[ M1 _MI
L DyiatNa
“Na = pMI M DY M pMI M
NaCNa ++/Dcicci
/DMI MI
(19)

Wl =
MI M M, MM
v PNatNa T/ Dk ¢ K+ /DY e
Ml M
| Vv Peicc
W) =

Ml M Ml M
v PNacNa T/ Pk ek +

MI
DY

To understand the meanings of the Nernst equilibrium ten-
sions, which appear in E{L9), let us consider that the liquid
junction I/MI would be permeable only to Nans Then,
these ions willdistribute between the two phases, | and M,
much more quickly than they will diffuse across the mem-
brane, between the phases Ml and MII. Therefore, one may i'K(t) A

consider that the N@ons reach arequilibrium distribution

described by the equality of their electrochemical potentials ;! (t)w—%/_nl/zF DMI M (gl (0)
A/t

in the two phases, | and MI:

1w + RT Inchy + F(@1)na = O + RT In b

+ F(oMina (20)
Thus,
I oMl le
(&1 — dMI)Na = 8rev,Na = ('U“ a) + ? |I’]
cNa
(21)

expresses the Nernst equilibrium tension that appears in Eq.
(19). The first term on the right hand side representstha-
dard Nernst equilibrium tension:

grev Na = —(M%'\é” - :U“Na (21)

Similarly, if the junction would be permeable only td' K
ions:
M

=g'rev,K——w°M' 2y + &L In—(zz)
K

grev K= & (MOMI :U*%I) (22)

(&1 — oMk

In the case of a junction permeable only to-Gbns, the
equality of the electrochemical potential in the phases | and
MI writes:

/’“CI +RT In CCI F(d)c = /Loc’|v“ + RT In Cgl — F(émi)c
(23)

and therefore,

1 RT ¢

(¢ — ¢mi)cI = Srevc = ;(Mgll nar') + —n c_(l(\:jl:
(24)

&1 = (4 — 12 24)

rev,Cl F Hcl IU'CI

In fact, the liquid junction is permeable to all three ions
and, for this reason, an intermediate electric tension es-
tablishes, which is given by Eq19) and represents the
weighted meanof the individual Nernst equilibrium tensions
SrevNa Srevk rev.clr With the weight coefficientgiven by
Eq.(19). '

Coming back to Eqg14)and(17)it results (see also Eq.
(10):

f OI
iNa(t) = i QNa(f) va(0)
N_#nlﬂp DML (2h(0) — glevna) 5)
2 R DR (6O~ o)
cl _glrev,(:l)
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An important conclusion comes out from E@5): in the

expressions of the current densities do not appear kinetic pa-

rameters (i.e.iJ,, Ana, €tC.), as it should be, because we
have supposed that the ionic species distribute very quickly
between the phases | and M, i.e., without charge transfer
limitations and therefore the kinetic behavior of the model-
ing electrode reactions should be that of reversible electrode
reactions.

It is obvious that by making in the above equations the
changes:

I — lland MI — MII

one gets the corresponding equations, valid for the liquid
junction II/MII. For sake of simplicity, we give only a part of
them:

I _ RN | I || In_ll
gm(0) = gm2 = ®NadrevNa T @K 8revk T @ci8rev,Cl

[AMIT Ml
" DNa cNa (26)
WNg =
MIT Ml MIT Ml MIL Ml
VPracNa Dk ek 4/ Der el
etc.
1
oll oMmIl oll
8rev,Na = f(/LNa — MNa
1
Srevk = Z0™ — 1) (26)
1
oll ol . oMmil
8rev,.cl = f(/“LCI — Ml
and
I fF MIL Il I
ina(t) = T2y DY Ny (gm(0) — 8rev.Na (27)
etc.

2.2. The expression of the diffusion potential across the
membrane

The deduction of Planck’s formula is given in the refer-
ences cite@24-28] It refers to the diffusion potential which
establishes at the contact between two electrolytic solutions
I/1l, but it may be also used to get the diffusion potential be-
tween the two ends of a single electrolytic solution, within
which the ionic concentrations change with the distance.
Here, we give this famous formula in its general form and
afterwards, we apply it to get the diffusion potential between
the two ends of the membrane, i.e., Ml and MII. Thus, for
univalent ions:

RT
gp = émi — dmi = 3 In& (28)
where¢ results by solving the equation:
U —e&ut —
i — &0 In(Cy/Cy) +1Iné Cy — &C) 29)

£V =V, In(Ci/C) —IngECy — Cy

835

in which,

U =" quis Ui = ) clux  (cations) (29
k,odd k,odd

V=Y cuis Vi = Y cjux  (anions) (29)
k,even k,even

=Y d=Ydia=-yd=Yd @
k,odd k,even k,odd k,even

As one sees, the Planck’s theory considers that the ionic
mobility ux remain constants along the liquid junction.
In our case:

M, M M. M, M Ml
Cmi = cNa+ ek =ccis Cmi =cna +o =c¢i (30)
+ MM . MUM. g+ _ MM, MM
Uwi = cNaNa T K 4K Uy = cNa UNa T ¢k uk (30)
— _ MM y— MM /
Vmi = ccruci Vv = cci Uci (30
and after some algebraic operations:
MM L MIL M MM MM
CNa “Nat oK Uk — E(CNatiNa T K UK)
Ml M M M
el ucy — egruc
MIl ;M
IN& +In(cgy” /eg)) (31)

T ZIng+ In(cHT /M

Further, because from the equaliip = c/d it follows the
equality @+b)/(b—a)=(+d)/(d— c), Eq.(31) becomes:

MM MM ML M MI M
CNa Na T ck Uk + g ug) — §(CRaliNa
MM, MM MI /Ml
+cx ug +cgug) _In(cgy /e
MM MM MM MM
gl U — CNa UNa — K Uk — Elcgug In§
MM MM
— CNa¥Na — K UK)
MM, MM
_ Inleciuci/eci ucy) (32)

Ing

Eq. (32) gives implicitly the diffusion potentiajp across
the membrane in Planck’s conception. To get an explicit ex-
pression ofyp, an additional hypothesis is necessary.

2.3. Comparison between the Goldman—-Hodkin—Katz
formula of the membrane potential and the expression of
the diffusion potential across the membrane given by the
Planck’s theory

In our notations, the formula of Goldman—Hodkin—Katz
writes (sed22,23)):
_RT n C}\',aPNa+ C{l Px + C|C|PCI

8m = F (33)

C}\laPNa + CIK P + C|(|:|PC|

(coming back to Eq(32)), let us suppose that the Clons
would be in equilibrium within the membrane, i.e., would
have equal electrochemical potentials in the two phases M
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and MII. Then, In the deduction of Goldman—Hodkin—Katz formula, it
oM M oMl Ml has been supposed that the two potential differences at the
per + RT Incgy — Fowi = ney + RT Incgp — Fom two junctions I/membrane and membrane/ll compensate each

other, and for this reason the membrane potential reduces to
the potential difference across the membrane. This supposi-

and, becausp" = 2" (the two ends of the membrane tion holds true if the ionic speciadistribute at equilibrium

differing only in the concentrations of the ionic species), one in between the corresponding phases put into contact at the

(34)

gets (see E(28)):

M MM
feo=Ing=In I\C/:l:| =In l\% CIVII (34)
C C u
cl cl e

and thus the quotients in E(B2) are equal to unity. Equat-
ing the first quotient to unity, and solving the equation thus
obtained, one gets:

Mil, M Mil, M
s — CNa “Na + CK uK (35)
- Ml M Ml M

CNakNa 1 €K UK
In this mode, have resulted two expressions &one
in function of quantities which refer only to the Cions,
supposedto bein equilibriubetween the two phases, Ml and
MIl, and the second in function of quantities which refer to
both N& and K" ions. Of course, these two ionic species may

not be in equilibrium within the membrane. Equating, these

two expressions of, applying the properties of a sequence
of equal quotients, a third expressiontafesults, and taking
its logarithm, one finally obtains:

ML, M MM MM
_ RT | NalNa™ ck Uk T ccitc (36)
&0 =7 MM o MM o MM

CNaltNa T ¢k UK +ccy Ug

Therefore, in the general case, when all three ionic species

are not in equilibrium within the membrane, the Planck’s
formula leads to Eq(32), which does not permit to get
an explicit expression ofp. In the particular case, when
the CI” ions are in equilibrium within the membrane, the
Planck’s formula leads to the expressi@®) of gp; which
is of the Goldman—Hodkin—Katz type. In other words, if the
CI~ ions are in equilibrium within the membrane, the mem-
brane potential in the Goldman—Hodkin—Katz theory is in
fact a Planck’s diffusion potential. However, a few words are
necessary concerning the equivalence of form&2 and
(36).

In the Goldman—Hodkin—Katz theory, the quantitig,
Pk, Pc| express thepermeabilitiesof the membrane to the
ionic species N& K*, CI~, and have the expressidi4,22}

F F F

Pna = E“Na§ Px = EM:\(A, Pc| = E“M

whered is the thickness of the membrane.
To introduce the permeabilitidays, Pk, Pci in Eq. (36),

suffice to multiply the ionic mobility by the same factefd.

Thus,

(37)

C',{f;' Pna+ C,"("” Px + cg",' P
CM;PNa + c}'\{” Px + C{\;"ﬂ' P

_RT

8D =

7 (36)

two liquid junctions. Indeed, according to the developments
given in this paper, this supposition implies the equalities:

gm1 = (&1 — om1) = (1 — dmina = (D1 — dmi)k
= (& —¢m)cr and gmz = (1 — dmir)
= (én — dmi)na = (D1 — oMk = (o1 — e
(38)

Then, equating the electrochemical potentials in the
phases in contact, say for Nans, one gets:

OMI

ftha+ RT INcha+ ¢ = w8 + RT IncM +om (39)
and
1R+ RT Incfa+ dn = uda" + RT Incly + dwn
(39)
But, udl, = ulk anduQM = M1 Thus, Egs(39) and
(39) lead to:
C}\l CMI
TIn-12+¢ —¢n=RTIN2 +pm —dmi (40)
Na “Na

Therefore, from the equality; — ¢ = émi — v, it
follows:

MI Ml M Mil MI MII
_%%Na_ Na.. _ % _ % . _Cc _ ‘a
'Na = 7 = 'rK_C| = ’rCI_Cl =
Na Na K K cl cl

(40)

Eqg. (40) permit to introduce the concentratioeg,, ch,,
etc. in Eq. (36), which. becausgmi — gm2 =0, will give the
expression of the membrane potential in Planck’s concep-
tion, but for the particular case when, the ionic speciet, Na
K* and CI, distribute at equilibrium in between the corre-
sponding phases put into contact at the two liquid junctions,
and, in addition, the Cl ions are in equilibrium within the
membrane. This expression writes:

RT c}\', Pna+ c|'(' Pk + ck e
gm=gp = In = (41)
cnaPNat+ e Pk + ¢ Pal
where
Pna = rnaPha; Pk = rk Pk Pol = raiPal (41)

and, as one sees, is equivalent to the expre¢sn
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3. Conclusions cll =M aswellagl + ! = N 4 " (43)

The rest potential of a biological membrane is the sum of conditions, however, very restrictive.
three potential differences, two of them at the liquid junctions  Further, let us integrate Eq. (32rom x=0, tox=X, and
between the outside electrolytic solution and the beginning let us take into account E42)too. Then,
of the membrane, respective the ending of the membrane and

P 9 (A + B)d Cwmi

the inside electrolytic solution, and the third one across the ¢y, — oy = —
membrane. 2(Cvi — Cmi)  Cwmix

Togetthe expressions of the first two potential differences,  coming back to the hypothesis used to derive B6) as

i.e., gm1 andgmz, the transport of an ionic species through 3 particular case of the Planck’s formula, i.e., the @ins
an ITIES interface has been interpreted as an electrode redox e in equilibrium within the membrane, let us write it in the

reaction. This has permitted to express proportionally the flux general form:
of transport by the current density of “this modeling electrode
reaction”, and to use the results very recently obtained by uQ" + RT Incl¥! — Fomi = uQ™ + RT Inc* — Fom,
Bonciocat et al., concerning a new approach to the theoretical (45)
analysis of electrode (and multielectrode) redox reactions, in
which the integral equations of Volterra and Abel types play a
very important role. The interfaces I/MI and 1l/MIl represent From Eqgs(44) and(45) results:
examples of redox three electrodes (because of the three ionic
species) and has been analyzed based on this new theoretic:i\l M f(A+ B) M
approach. In this way have resulted the expressib@sand N = fom = dmi) = 2(CMIT — ¢cMhy In Mx (46)
(19) of gy, respective26) and(26) of gmo. ! cl

As for the diffusion potential across the membrane, we which implies,
have chosen to deduce its expression on the basis of the fa-

(44)

cc

mous Planck’s formula, for two reasons: first, because this f(A+ B)d =1 (48)
formula refers to a “constrained diffusion”, by which the 2(CMt — M

ionic concentrations remain constant in each section of the 5 therefore,

diffusion layer, as it happens within a biological membrane

due to the action of the hypothetical “Biological Potentio- -mi _ -w _ /(A + B)d (47)
stat”; secondly, because it has been deduced by expressing 2

the velocity of an ion under the simultaneous actions of both |1 415 results:

concentration and electrical potential gradients, but, unlike

the Goldman—Hodkin-Katz deduction, it does not suppose a .mit _ i + f(A+ B)d 47)
constant electrical potential gradient within the membrane. It cl cl 2

thus results that the Planck’s conception is superior to that of ;
Goldman—Hodkin—Katz. To be more clear, it is necessary to

i i A+ B)d ,
use the expressions ofthe concentraﬁoanq ofthe gradient Chﬁg + C|'\<A” _ CM:';HF C|l\(/|| i f( ) @7")
d¢lax, along the membrane, as they result in the course of the 2
mathematical derivation of the Planck’s form(@8)(29").

conditions, of course, less restrictive than those given by Eq.
They are: (43). Consequently, to get the Goldman—Hodkin—Katz for-
N mula by particularizing the Planck’s formula, the additional
Cmx = (Cmit — Cwmi)= + Cwmi (42) hypothesis expressed by E@5) is much more indicated
d than the hypothesis of a constant electrical potential gradient
respective (0¢/0x = constant) along the membrane.
Concerning the distribution at equilibrium of the ionic
species in between the phases put into contact, as a condition,
9 _A+B_ (A + B)d (42) which permits to neglect the contribution of the difference
dx  2Cmx  2[(Cvi = Cwmi)x + Cwd] Om1— Om2 to the membrane potentigh,, one may consider

that it is implicitly supposed in the Goldman—Hodkin—Katz
approach too.
Finally, one may conclude:

where MK is the plane within the membrane at the distaxce

from the beginning of the membrang&the thickness of the

membrane anA, B, constants. The readers interested in their

derivation must consult the cited references. - the correct membrane potential is the sum of all three con-
Eq. (42) shows that, from the point of view of the Planck’s tributions,gm1, —9m2 andgp;

conception, the supposition used by Goldman—Hodkin—Katz, - the approach used in this paper to get the expressiapg of

i.e., dp/ox = constant, implie€y =Cwy, which means: andgm2, represents a novelty, which proves the importance
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of the integral equations of Volterra type and Abel type, in [11] N. Bonciocat, E. Papadopol, S. Borca, 1.0. Marian, Rev. Roum.

the future development of the theoretical electrochemistry;
- to get the expression of the diffusion potential difference [12] N- Bonciocat, E. Papadopol,
across the membrane, the Planck’s approach is superior t
the Goldman—Hodkin—Katz approach, but has the disad-

vantage of not giving an explicit expressionggf;
- by using a less restrictive hypothesis (i.e., the @ns

Chim. 46 (2001) 3-8.

S. Borca, 1.0. Marian, Rev. Roum.
Chim. 46 (2001) 481-486.

13] N. Bonciocat, E. Papadopol, S. Borca, 1.O. Marian, Rev. Roum.
Chim. 46 (2001) 991-998.

[14] 1.O. Marian, N. Bonciocat, R. &dulescu, C. Filip, J. Pharm.
Biomed. Anal. 24 (2001) 1175-1179.

are in equilibrium within the membrane) than that used [15] N. Bonciocat, A. Cotarta, J. Bouteillon, J.C. Poignet, J. High Temp.

by Goldman—Hodkin—Katz approach (i.&p/0x = constant

across the membrane), the Planck’s formula particularizes

into the Goldman—Hodkin—Katz formula.
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