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Abstract

In a series of recent papers, Bonciocat et al., have shown that the faradaic current density of an electrode redox reactions occurring with
combined limitations, of charge transfer and nonstationary linear, semi-infinite diffusion, is the solution of an integral equation of Volterra
type. This integral equation has been transformed to describe the transport of ions through the interface between two immiscible electrolytic
solutions. According to Goldman, Hodkin, Katz theory, the rest potential of a biological membrane is determined by the maintenance of
different concentrations of the ions Na+, K+ and Cl−, in the two aqueous solutions separated by the membrane. Using the integral equations (of
Volterra type) for the ionic current densitiesi , i , i , and applying the open circuit condition (i.e.,i + i + i = 0), the potential differences
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t the junctions: aqueous solution (I)/membrane, respective membrane/aqueous solution (II), have been obtained. To get the diffus
cross the membrane, the Planck’s theory has been used. The sum of these three contributions gives the expression of the rest
comparison with the Goldman–Hodkin–Katz formula is made, showing in what conditions they become identical formulae).
2004 Published by Elsevier B.V.
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. Introduction

In a series of papers, Bonciocat et al., have shown that
he faradaic current density of an electrode redox reaction

+ne↔ R, which occurs with combined charge transfer and
onstationary, linear, semi-infinite diffusion limitations, is

he solution of the following integral equation of Volterra
ype[1–6]:

F(t) = − i0N(t)

π1/2

t∫
0

iF(u)

(t − u)1/2
du + ϕ(t) (1)

here

(t) = exp[−βnfη(t)]

nF
√
DOcO

+ exp[(1− β)nfη(t)]

nF
√
DRcR

(1′)

nd

(t) = i0{exp[−βnfη(t)] − exp[(1− β)nfη(t)]}; f = F

RT
(1′′)

∗ Corresponding author. Tel.: +40 64 193 118; fax: +40 64 197 257.
E-mail address:iomar@chem.ubbcluj.ro (I.O. Marian).

η(t) is the applied overtension at the moment of timet, u
is a time beforet, and the other quantities have the us
meanings:i0 = i00c

1−β

O c
β
R the exchange current density

the electrode redox reaction andβ its symmetry factor,DO,
DR (andcO, cR) the diffusion coefficients (and the conce
trations) of the electrochemical active species O and R
for i00, it represents the standard exchange current dens
the electrode reaction.

By solving the above integral equation, it was possib
ground not only the nonstationary dc, and ac, methods alr
used in the experimental electrochemistry[1,7], but also new
methods of direct and cyclic voltammetry, chromoamper
etry and impedance spectroscopy[8–21].

The integral Eq.(1) may be easily transformed to d
scribe the transport of ions through the interface between
immiscible electrolytic solution (ITIES). Indeed, conside
cation passing from an aqueous solution (I) to a nonaqu
solution (II). This passage is equivalent to an anodic e
trode redox reaction R→ O +ne, the cation in solution (I
being the oxidized species O, and in solution (I) the red
species R. This equivalence comes from the fact that
processes transport positive charges from left to right
731-7085/$ – see front matter © 2004 Published by Elsevier B.V.
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solution (I)→ solution (II), respective Me→ solution). Of
course, in the case of an anion, the passage is equivalent to
a cathodic electrode redox reaction O +ne→ R, the anion in
solution (I) being the oxidized species, and in solution (II)
the reduced species.

Consequently, to obtain the integral equation whose solu-
tion iC expresses proportionally (as a current density) the flux
of transport of a cation C+ through the interface I/II, suffice
to make in the integral Eq.(1) the following changes:

η(t) → ηC(t)

iF(t), iF(u) → iC(t), iC(u)
(2)

i0 = i00c
1−β

O c
β
R → i0C = i00

C (cII
C)

1−βC(cI
C)

βC

DO,DR → DII
C,D

I
C

n → 1

(2′)

i0C, i
00
C andβC represents the kinetic parameters of thehypo-

thetical electrode reactionby which one models the transport
of C+ through the interface I/II.βC represents the symmetry
factor of the energetic barrier determined by the electric dou-
ble layer of the interface I/II, and the exchange current density
i0C is expressed in function of the standard exchange current
densityi00

C and the concentrations of the cation C+ in the two
planes that delimitate the electric double layer. Concerning
the expression ofη (t), it will be given latter at a convenient
t
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Fig. 1. The electrochemical chain showing the components of the rest po-
tential of a biological membranegm =ΦI −ΦII =gm1 −gm2 +gD.

a comparison with the Goldman–Hodkin–Katz formula is
made, showing in what conditions they become identical
formulae.

2. Results and discussions

2.1. The expressions of the electric tensions gm1 and gm2

Let’s consider the junction I/MI, where by MI we have
denoted the beginning of the membrane (i.e., the part which
is in contact with the extra cellular solution (I)).

To obtain the integral equations corresponding to the
cations Na+ and K+, we shall make the changes(2) and(2′)
in the integral Eq.(1), but putting MI instead of II in their
expressions. It thus results:

iINa(t) = −QI
Na(t)

t∫
0

iINa(u)

(t − u)1/2
du + ϕI

Na(t) (4)

iIK(t) = −QI
K(t)

t∫
0

iIK(u)

(t − u)1/2
du + ϕI

K(t) (4′)

o

i

w ntity
Q
j

i

C
ime.

In the case of an anion A−, the necessary changes are

η(t) → ηA(t)

iF(t), iF(u) → iA(t), iA(u)
(3)

i0 = i00c
1−β

O c
β
R → i0A = i00

A (cI
A)

1−βA (cII
A)

βA

DO,DR → DI
A,D

II
A

n → 1

(3′)

ndi0A, i
00
A , βA, c

I
A, c

II
A have similar meanings.

According to Goldman, Hodkin and Katz[22,23], the res
otential of a biological membrane is determined by the

erent concentrations of the ions Na+, K+ and Cl−, in the two
queous solution separated by the membrane. These co

rations are maintained at practically constant values
echanism, yet unknown, which play the role of a “Biol

cal Potentiostat”.
Thus, the electrochemical chain needed to obtain the

otential of a biological membrane is illustrated inFig. 1.
Using the integral equations (of Volterra type) hav

s solution the current densitiesiNa, iK, iCl, and applying
he open circuit condition (i.e.,iNa + iK + iCl = 0), the poten
ial differencesgm1, and gm2 have been obtained. To g
he diffusion potential across the membrane, the Plan
heory has been used, because it supposes a “const
iffusion” through the liquid junction, by which the ion
oncentrations in each section of the junction layer rem
onstant in time[24–28]. The sum of these three co
ributions gives the expression of the rest potential,
d

Similarly, for the anion Cl−, using the changes(3)and(3′)
ne gets:

I
Cl(t) = −QI

Cl(t)

t∫
0

iICl(u)

(t − u)1/2
du + ϕI

Cl(t) (4′′)

here, for sake of simplicity, we have introduced the qua
I(t) = i0NI (t)/�1/2. The superior index “I” indicates thefirst
unction, i.e., I/MI.

In open circuit conditions:

I
Na(t) + iIK(t) + iICl(t) = 0 (5)
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and therefore,

t∫
0

QI
Na(u)iINa(u) + QI

K(u)iIK(u) + QI
Cl(u)iICl(u)

(t − u)1/2
du

= ϕI
Na(t) + ϕI

K(t) + ϕI
Cl(t) (6)

An Abel integral equation has the form:
t∫
0

Ψ (u)

(t − u)α
du = C(t); α∈ (0,1) (7)

and forα= 1/2, its solution is[29]:

Ψ (t) = 1

π


C(0)√

t
+

t∫
0

C′(u)

(t − u)1/2
du


 (7′)

Thus, Eq.(6) is an Abel integral equation and has the
solution:

QI
Na(u)iINa(u) + QI

K(u)iIK(u) + QI
Cl(u)iICl(u)

= 1

π

[
ϕI

Na(0) + ϕI
K(0) + ϕI

Cl(0)√
t

t∫ ′ ′ ′


w ech-
a f the
b

g

(
p oth-
e ctions
ϕ ter
t al
m ntial
g g to
t on-
s

a f
c ions,
w ems.
T

where the minus sign comes from the convention used, i.e.,
negative (positive) overtensions, determine positive (nega-
tive) currents.

Coming back to Eq.(8), the integral term cancels and thus:

QI
Na(u)iINa(u) + QI

K(u)iIK(u) + QI
Cl(u)iICl(u)

= f

π

ϕI
Na(0) + ϕI

K(0) + ϕI
Cl(0)√

t
(12)

Eq.(12)shows that:

Qt
Na(t)i

I
Na(t) = −f

π

i0I
Naη

I
Na(0)√
t

Qt
K(t)iIK(t) = −f

π

i0I
K ηI

K(0)√
t

Qt
Cl(t)i

I
Cl(t) = −f

π

i0I
Clη

I
Cl(0)√
t

(13)

and further

iINa(t)

[i0I
Na/Q

I
Na(t)]η

I
Na(0)

= iIK(t)

[i0I/QI (t)]ηI (0)
= iICl(t)

[i0I/QI (t)]ηI (0)

i

s
c

ll, as
c ution,
+
0

(ϕI
Na(t)) + (ϕI

K(u)) + (ϕI
Cl(u))

(t − u)1/2
du (8)

e shall accept that the human organism, by using a m
nism, yet nonelucidated, maintains the rest potential o
iological membrane at a constant value, i.e.,

I
m(t) ≈ const= gI

m(0) (9)

the index “m”, indicates that the rest potential is amixed
otential (because of the three ionic currents)). This hyp
sis has an important consequence concerning the fun
I
Na(t), ϕ

I
K(t) and ϕI

Cl(t). Indeed in their expressions en
he overtensionsηI

Na(t), η
I
K(t), ηI

Cl(t), which have the usu
eaning, i.e., the differences between the mixed pote

I
m(t) and the Nernst equilibrium tensions, correspondin
he three ions[28]. Therefore, these overtensions are c
tant, i.e.,

ηI
Na(t) = gI

m(t) − gI
rev,Na = gI

m(0) − gI
rev,Na = ηI

Na(0)

ηI
K(t) = gI

m(0) − gI
rev,K = ηI

K(0)

ηI
Cl(t) = gI

m(0) − gI
rev,Cl = ηI

Cl(0)

(10)

nd consequentlyϕI
Na(t), ϕ

I
K(t), ϕI

Cl(t), are constant too. O
ourse, we are interested in the case of small overtens
hich represent the usual situations in biological syst
hen (see Eq.(1′′)):

ϕI
Na(t) = ϕI

Na(0) = −i0I
Nafη

I
Na(0)

ϕI
K(t) = ϕI

K(0) = −i0I
K fηI

K(0)

ϕI
Cl(t) = ϕI

Cl(0) = −i0I
Clfη

I
Cl(0)

(11)
K K K Cl Cl Cl

= iINa(t) + iIK(t) + iICl(t)

[i0I
Na/Q

I
Na(t)]η

I
Na(0) + [i0I

K /QI
K(t)]ηI

K(0)

+ [i0I
Cl/Q

I
Cl(t)]η

I
Cl(0)

= − f

π
√
t

(14)

Then, taking into account the open circuit condition(5),
t follows:

i0I
Na

QI
Na(t)

ηI
Na(0) + i0I

K

QI
K(t)

ηI
K(0) + i0I

Cl

QI
Cl(t)

ηI
Cl(0) = 0 (15)

But, the overtensionsηI
Na(0), ηI

K(0) and ηI
Cl(0) being

mall, we may approximateN I
Na(t), N

I
K(t) andN I

Cl(t), by the
onstant expressions (see Eqs.(1′), (2′) and(3′)):

N I
Na(t) ≈ 1

F

√
DI

Na(t)c
I
Na(t) +

√
DMI

Na(t)cMI
Na(t)√

DI
Na(t)D

MI
Na(t)cI

Na(t)c
MI
Na(t)

N I
K(t) ≈ 1

F

√
DI

K(t)cI
K(t) +

√
DMI

K (t)cMI
K (t)√

DI
K(t)DMI

K (t)cI
K(t)cMI

K (t)

N I
Cl(t) ≈ 1

F

√
DI

Cl(t)c
I
Cl(t) +

√
DMI

Cl (t)cMI
Cl (t)√

DI
Cl(t)D

MI
Cl (t)cI

Cl(t)c
MI
Cl (t)

(16)

The concentrations in the membrane being very sma
ompared to the corresponding ones in the aqueous sol
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Eqs.(16)simplify to:

N I
Na(t) ≈ 1

F

√
DMI

Na(t)cMI
Na(t)

N I
K(t) ≈ 1

F

√
DMI

K (t)cMI
K (t)

N I
Cl(t) ≈ 1

F

√
DMI

Cl (t)cMI
Cl (t)

(16′)

Further,

i0I
Na

QI
Na(t)

≈ π1/2

N I
Na

= π1/2F

√
DMI

Nac
MI
Na

i0I
K

QI
K(t)

≈ π1/2

N I
K

= π1/2F

√
DMI

K cMI
K

i0I
Cl

QI
Cl(t)

≈ π1/2

N I
Cl

= π1/2F

√
DMI

Cl c
MI
Cl

(17)

and introducing in Eq.(15):√
DMI

Nac
MI
Naη

I
Na(0) +

√
DMI

K cMI
K ηI

K(0)√

t

g

w

ten-
s id
j
t I,
m m-
b may
c
d tials
i

µ0I
Na + RT ln cI

Na + F (φI )Na = µ0MI
Na + RT ln cMI

Na

+F (φMI )Na (20)

Thus,

(φI − φMI )Na = gI
rev,Na = 1

F
(µ0MI

Na − µ0I
Na) + RT

F
ln

cMI
Na

cI
Na

(21)

expresses the Nernst equilibrium tension that appears in Eq.
(19). The first term on the right hand side represents thestan-
dardNernst equilibrium tension:

g0I
rev,Na = 1

F
(µ0MI

Na − µ0I
Na) (21′)

Similarly, if the junction would be permeable only to K+

ions:

(φI − φMI )K = gI
rev,K = 1

F
(µ0MI

K − µ0I
K ) + RT

F
ln

cMI
K

cI
K

(22)

g0I
rev,K = 1

F
(µ0MI

K − µ0I
K ) (22′)

In the case of a junction permeable only to Cl− ions, the
equality of the electrochemical potential in the phases I and
MI writes:

µ

a

(

g

ns
a es-
t e
w ns
g

E
q.

(

+ DMI
Cl c

MI
Cl η

I
Cl(0) = 0 (18)

After using Eq.(10) to express the overtensions, Eq.(18)
akes the form:

I
m(0) = gm1 = ωI

Nag
I
rev,Na + ωI

Kg
I
rev,K + ωI

Clg
I
rev,Cl (19)

here the weight coefficients have the expressions:

ωI
Na =

√
DMI

Nac
MI
Na√

DMI
Nac

MI
Na +

√
DMI

K cMI
K +

√
DMI

Cl c
MI
Cl

ωI
K =

√
DMI

K cMI
K√

DMI
Nac

MI
Na +

√
DMI

K cMI
K +

√
DMI

Cl c
MI
Cl

ωI
Cl =

√
DMI

Cl c
MI
Cl√

DMI
Nac

MI
Na +

√
DMI

K cMI
K +

√
DMI

Cl c
MI
Cl

(19′)

To understand the meanings of the Nernst equilibrium
ions, which appear in Eq.(19), let us consider that the liqu

unction I/MI would be permeable only to Na+ ions. Then,
hese ions willdistributebetween the two phases, I and M
uch more quickly than they will diffuse across the me
rane, between the phases MI and MII. Therefore, one
onsider that the Na+ ions reach anequilibrium distribution,
escribed by the equality of their electrochemical poten

n the two phases, I and MI:
0I
Cl +RT ln cI

Cl − F (φI )Cl = µ0MI
Cl + RT ln cMI

Cl − F (φMI )Cl

(23)

nd therefore,

φI − φMI )Cl = gI
rev,Cl = 1

F
(µ0I

Cl − µ0MI
Cl ) + RT

F
ln

cI
Cl

cMI
Cl

(24)

0I
rev,Cl = 1

F
(µ0I

Cl − µ0MI
Cl ) (24′)

In fact, the liquid junction is permeable to all three io
nd, for this reason, an intermediate electric tension

ablishes, which is given by Eq.(19) and represents th
eighted meanof the individual Nernst equilibrium tensio
I
rev,Na, g

I
rev,K, g

I
rev,Cl, with theweight coefficientsgiven by

q.(19′).
Coming back to Eqs.(14)and(17) it results (see also E

10)):

iINa(t) = − f

π
√
t

i0I
Na

QI
Na(t)

ηI
Na(0)

≈ − f

π
√
t
π1/2F

√
DMI

Nac
MI
Na(gI

m(0) − gI
rev,Na)

iIK(t) ≈ − f

π
√
t
π1/2F

√
DMI

K cMI
K (gI

m(0) − gI
rev,K)

iICl(t) ≈ − f

π
√
t
π1/2F

√
DMI

Cl c
MI
Cl (gI

m(0) − gI
rev,Cl)

(25)
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An important conclusion comes out from Eq.(25): in the
expressions of the current densities do not appear kinetic pa-
rameters (i.e.,i0I

Na, βNa, etc.), as it should be, because we
have supposed that the ionic species distribute very quickly
between the phases I and MI, i.e., without charge transfer
limitations and therefore the kinetic behavior of the model-
ing electrode reactions should be that of reversible electrode
reactions.

It is obvious that by making in the above equations the
changes:

I → II and MI → MII

one gets the corresponding equations, valid for the liquid
junction II/MII. For sake of simplicity, we give only a part of
them:

gII
m(0) = gm2 = ωII

Nag
II
rev,Na + ωII

Kg
II
rev,K + ωII

Clg
II
rev,Cl

ωII
Na =

√
DMII

Na cMII
Na√

DMII
Na cMII

Na +
√
DMII

K cMII
K +

√
DMII

Cl cMII
Cl

(26)

etc.

g0II
rev,Na = 1

F
(µ0MII

Na − µ0II
Na)

1

a

i

e

2
m

fer-
e h
e tions
I be-
t thin
w nce.
H and
a een
t for
u

g

w

in which,

U+
I =

∑
k,odd

cI
kuk; U

+
II =

∑
k,odd

cII
k uk (cations) (29′)

V−
I =

∑
k,even

cI
kuk; V

−
II =

∑
k,even

cII
k uk (anions) (29′′)

CI =
∑
k,odd

cI
k =

∑
k,even

cI
k; CII =

∑
k,odd

cII
k =

∑
k,even

cII
k (29′′′)

As one sees, the Planck’s theory considers that the ionic
mobility uk remain constants along the liquid junction.

In our case:

CMI = cMI
Na + cMI

K = cMI
Cl ; CMII = cMII

Na + cMII
K = cMII

Cl (30)

U+
MI = cMI

Nau
M
Na + cMI

K uM
K ; U+

MII = cMII
Na uM

Na + cMII
K uM

K (30′)

V−
MI = cMI

Cl u
M
Cl; V

−
MII = cMII

Cl uM
Cl (30′′)

and after some algebraic operations:

cMII
Na uM

Na + cMII
K uM

K − ξ(cMI
Nau

M
Na + cMI

K uM
K )

cMII
Cl uM

Cl − ξcMI
Cl u

M
Cl

= ln ξ + ln(cMII
Cl /cMI

Cl )

− ln ξ + ln(cMII
Cl /cMI

Cl )
(31)

e

t t ex-
p

2
f f
t e
P

atz
w

g

(
w uld
h s MI
g0II
rev,K =

F
(µ0MII

K − µ0II
K )

g0II
rev,Cl = 1

F
(µ0II

Cl − µ0MII
Cl )

(26′)

nd

II
Na(t) = − fF

π1/2
√
t

√
DMII

Na cMII
Na (gII

m(0) − gII
rev,Na) (27)

tc.

.2. The expression of the diffusion potential across the
embrane

The deduction of Planck’s formula is given in the re
nces cited[24–28]. It refers to the diffusion potential whic
stablishes at the contact between two electrolytic solu

/II, but it may be also used to get the diffusion potential
ween the two ends of a single electrolytic solution, wi
hich the ionic concentrations change with the dista
ere, we give this famous formula in its general form
fterwards, we apply it to get the diffusion potential betw

he two ends of the membrane, i.e., MI and MII. Thus,
nivalent ions:

D = φMI − φMII = RT

F
ln ξ (28)

hereξ results by solving the equation:

U+
II − ξU+

I

ξV−
II − V−

I

= ln(CII/CI ) + ln ξ

ln(CII/CI ) − ln ξ

CII − ξCI

ξCII − CI
(29)
Further, because from the equalitya/b=c/d it follows the
quality (a+b)/(b− a) = (c+d)/(d− c), Eq.(31)becomes:

cMII
Na uM

Na + cMII
K uM

K + cMII
Cl uM

Cl − ξ(cMI
Nau

M
Na

+ cMI
K uM

K + cMI
Cl u

M
Cl)

cMII
Cl uM

Cl − cMII
Na uM

Na − cMII
K uM

K − ξ(cMI
Cl u

M
Cl

− cMI
Nau

M
Na − cMI

K uM
K )

= ln(cMI
Cl /c

MII
Cl )

ln ξ

= ln(cMI
Cl u

M
Cl/c

MII
Cl uM

Cl)

ln ξ
(32)

Eq.(32)gives implicitly the diffusion potentialgD across
he membrane in Planck’s conception. To get an explici
ression ofgD, an additional hypothesis is necessary.

.3. Comparison between the Goldman–Hodkin–Katz
ormula of the membrane potential and the expression o
he diffusion potential across the membrane given by th
lanck’s theory

In our notations, the formula of Goldman–Hodkin–K
rites (see[22,23]):

m = RT

F
ln

cII
NaPNa + cII

KPK + cI
ClPCl

cI
NaPNa + cI

KPK + cII
ClPCl

(33)

coming back to Eq.(32)), let us suppose that the Cl− ions
ould be in equilibrium within the membrane, i.e., wo
ave equal electrochemical potentials in the two phase
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and MII. Then,

µ0MI
Cl + RT ln cMI

Cl − FφMI = µ0MII
Cl + RT ln cMII

Cl − FφMII

(34)

and, becauseµ0MI
Cl = µ0MII

Cl (the two ends of the membrane
differing only in the concentrations of the ionic species), one
gets (see Eq.(28)):

fgD = ln ξ = ln
cMI

Cl

cMII
Cl

= ln
cMI

Cl u
M
Cl

cMII
Cl uM

Cl

(34′)

and thus the quotients in Eq.(32) are equal to unity. Equat-
ing the first quotient to unity, and solving the equation thus
obtained, one gets:

ξ = cMII
Na uM

Na + cMII
K uM

K

cMI
Nau

M
Na + cMI

K uM
K

(35)

In this mode, have resulted two expressions forξ, one
in function of quantities which refer only to the Cl− ions,
supposed tobe inequilibriumbetween the two phases, MI and
MII, and the second in function of quantities which refer to
both Na+ and K+ ions. Of course, these two ionic species may
not be in equilibrium within the membrane. Equating, these
two expressions ofξ, applying the properties of a sequence
o g
i

g

ecies
a ck’s
f et
a n
t the
P
i the
C m-
b s in
f are
n
(

P e
i

P

w

s
T

g

In the deduction of Goldman–Hodkin–Katz formula, it
has been supposed that the two potential differences at the
two junctions I/membrane and membrane/II compensate each
other, and for this reason the membrane potential reduces to
the potential difference across the membrane. This supposi-
tion holds true if the ionic speciesdistribute at equilibrium
in between the corresponding phases put into contact at the
two liquid junctions. Indeed, according to the developments
given in this paper, this supposition implies the equalities:

gm1 = (φI − φMI ) = (φI − φMI )Na = (φI − φMI )K

= (φI − φMI )Cl and gm2 = (φII − φMII )

= (φII − φMII )Na = (φII − φMII )K = (φII − φMII )Cl

(38)

Then, equating the electrochemical potentials in the
phases in contact, say for Na+ ions, one gets:

µI
Na + RT ln cI

Na + φI = µ0MI
Na + RT ln cMI

Na + φMI (39)

and

µ0II
Na + RT ln cII

Na + φII = µ0MII
Na + RT ln cMII

Na + φMII

(39′)

(

R

f

r

e
e cep-
t Na
K re-
s ons,
a e
m

g

w

P

a

f equal quotients, a third expression ofξ results, and takin
ts logarithm, one finally obtains:

D = RT

F
ln

cMII
Na uM

Na + cMII
K uM

K + cMI
Cl u

M
Cl

cMI
Nau

M
Na + cMI

K uM
K + cMII

Cl uM
Cl

(36)

Therefore, in the general case, when all three ionic sp
re not in equilibrium within the membrane, the Plan

ormula leads to Eq.(32), which does not permit to g
n explicit expression ofgD. In the particular case, whe

he Cl− ions are in equilibrium within the membrane,
lanck’s formula leads to the expression(36) of gD; which

s of the Goldman–Hodkin–Katz type. In other words, if
l− ions are in equilibrium within the membrane, the me
rane potential in the Goldman–Hodkin–Katz theory i

act a Planck’s diffusion potential. However, a few words
ecessary concerning the equivalence of formulae(32) and
36).

In the Goldman–Hodkin–Katz theory, the quantitiesPNa,
K, PCl express thepermeabilitiesof the membrane to th

onic species Na+, K+, Cl−, and have the expressions[21,22]:

Na = F

d
uM

Na; PK = F

d
uM

K ; PCl = F

d
uM

Cl (37)

hered is the thickness of the membrane.
To introduce the permeabilitiesPNa, PK, PCl in Eq. (36),

uffice to multiply the ionic mobility by the same factorF/d.
hus,

D = RT

F
ln

cMII
Na PNa + cMII

K PK + cMI
Cl PCl

cMI
NaPNa + cMI

K PK + cMII
Cl PCl

(36′)
But, µ0I
Na = µ0II

Na andµ0MI
Na = µ0MII

Na . Thus, Eqs.(39) and
39′) lead to:

T ln
cI

Na

cII
Na

+ φI − φII = RT ln
cMI

Na

cMII
Na

+ φMI − φMII (40)

Therefore, from the equalityφI − φII = φMI − φMII , it
ollows:

Na = cMI
Na

cI
Na

= cMII
Na

cII
Na

; rK = cMI
K

cI
K

= cMII
K

cII
K

; rCl = cMI
Cl

cI
Cl

= cMII
Cl

cII
Cl

(40′)

Eq. (40′) permit to introduce the concentrationscI
Na, c

II
Na,

tc. in Eq. (36′), which. becausegm1−gm2 = 0, will give the
xpression of the membrane potential in Planck’s con
ion, but for the particular case when, the ionic species+,

+ and Cl−, distribute at equilibrium in between the cor
ponding phases put into contact at the two liquid juncti
nd, in addition, the Cl− ions are in equilibrium within th
embrane. This expression writes:

m = gD = RT

F
ln

cII
NaP̃Na + cII

KP̃K + cI
ClP̃Cl

cI
NaP̃Na + cI

KP̃K + cII
ClP̃Cl

(41)

here

˜Na = rNaPNa; P̃K = rKPK; P̃Cl = rClPCl (41′)

nd, as one sees, is equivalent to the expression(33).
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3. Conclusions

The rest potential of a biological membrane is the sum of
three potential differences, two of them at the liquid junctions
between the outside electrolytic solution and the beginning
of the membrane, respective the ending of the membrane and
the inside electrolytic solution, and the third one across the
membrane.

To get the expressions of the first two potential differences,
i.e., gm1 andgm2, the transport of an ionic species through
an ITIES interface has been interpreted as an electrode redox
reaction. This has permitted to express proportionally the flux
of transport by the current density of “this modeling electrode
reaction”, and to use the results very recently obtained by
Bonciocat et al., concerning a new approach to the theoretical
analysis of electrode (and multielectrode) redox reactions, in
which the integral equations of Volterra and Abel types play a
very important role. The interfaces I/MI and II/MII represent
examples of redox three electrodes (because of the three ionic
species) and has been analyzed based on this new theoretical
approach. In this way have resulted the expressions(19)and
(19′) of gm1, respective(26)and(26′) of gm2.

As for the diffusion potential across the membrane, we
have chosen to deduce its expression on the basis of the fa-
mous Planck’s formula, for two reasons: first, because this
formula refers to a “constrained diffusion”, by which the
i f the
d ane
d tio-
s ssing
t both
c nlike
t se a
c e. It
t at of
G ry to
u t
∂ f the
m
T

C

r

w ce
f e
m heir
d

k’s
c atz,
i

cMI
Cl = cMII

Cl ,as well ascMI
Na + cMI

K = cMII
Na + cMII

K (43)

conditions, however, very restrictive.
Further, let us integrate Eq. (42′) from x= 0, tox=x, and

let us take into account Eq.(42) too. Then,

φMx − φMI = − (A + B)d

2(CMII − CMI )
ln

CMI

CMx

(44)

Coming back to the hypothesis used to derive Eq.(36)as
a particular case of the Planck’s formula, i.e., the Cl− ions
are in equilibrium within the membrane, let us write it in the
general form:

µ0MI
Cl + RT ln cMI

Cl − FφMI = µ0Mx
Cl + RT ln cMx

Cl − FφMx

(45)

From Eqs.(44)and(45) results:

ln
cMI

Cl

cMx
Cl

= f (φMI − φMx) = f (A + B)

2(CMII − CMI )
ln

cMI
Cl

cMx
Cl

(46)

which implies,

f (A + B)d

2(CMII − CMI )
= 1 (46′)

a

C

c

a

c

c y Eq.
( for-
m nal
h d
t dient
(

nic
s dition,
w nce
g r
t atz
a

- con-

- f
nce
onic concentrations remain constant in each section o
iffusion layer, as it happens within a biological membr
ue to the action of the hypothetical “Biological Poten
tat”; secondly, because it has been deduced by expre
he velocity of an ion under the simultaneous actions of
oncentration and electrical potential gradients, but, u
he Goldman–Hodkin–Katz deduction, it does not suppo
onstant electrical potential gradient within the membran
hus results that the Planck’s conception is superior to th
oldman–Hodkin–Katz. To be more clear, it is necessa
se the expressions of the concentrationC, and of the gradien
φ/∂x, along the membrane, as they result in the course o
athematical derivation of the Planck’s formula(28)–(29′′′).
hey are:

Mx = (CMII − CMI )
x

d
+ CMI (42)

espective

∂φ

∂x
= A + B

2CMx

= (A + B)d

2[(CMII − CMI )x + CMId]
(42′)

here Mx is the plane within the membrane at the distanx
rom the beginning of the membrane,d the thickness of th
embrane andA,B, constants. The readers interested in t
erivation must consult the cited references.

Eq. (42′) shows that, from the point of view of the Planc
onception, the supposition used by Goldman–Hodkin–K
.e.,∂φ/∂x= constant, impliesCMI =CMII , which means:
nd therefore,

MII − CMI = f (A + B)d

2
(47)

It thus results:

MII
Cl = cMI

Cl + f (A + B)d

2
(47′)

nd

MII
Na + cMII

K = cMI
Na + cMI

K + f (A + B)d

2
(47′′)

onditions, of course, less restrictive than those given b
43). Consequently, to get the Goldman–Hodkin–Katz
ula by particularizing the Planck’s formula, the additio
ypothesis expressed by Eq.(45) is much more indicate

han the hypothesis of a constant electrical potential gra
∂φ/∂x= constant) along the membrane.

Concerning the distribution at equilibrium of the io
pecies in between the phases put into contact, as a con
hich permits to neglect the contribution of the differe

m1−gm2 to the membrane potentialgm, one may conside
hat it is implicitly supposed in the Goldman–Hodkin–K
pproach too.

Finally, one may conclude:

the correct membrane potential is the sum of all three
tributions,gm1, −gm2 andgD;
the approach used in this paper to get the expressions ogm1
andgm2, represents a novelty, which proves the importa
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of the integral equations of Volterra type and Abel type, in
the future development of the theoretical electrochemistry;

- to get the expression of the diffusion potential difference
across the membrane, the Planck’s approach is superior to
the Goldman–Hodkin–Katz approach, but has the disad-
vantage of not giving an explicit expression ofgD;

- by using a less restrictive hypothesis (i.e., the Cl− ions
are in equilibrium within the membrane) than that used
by Goldman–Hodkin–Katz approach (i.e.,∂φ/∂x= constant
across the membrane), the Planck’s formula particularizes
into the Goldman–Hodkin–Katz formula.
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